Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 12: 669424, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113367

RESUMO

Development of double haploids is an elusive current breeding objective in Cannabis sativa L. We have studied the whole process of anther and pollen grain formation during meiosis, microsporogenesis, and microgametogenesis and correlated the different microgametophyte developmental stages with bud length in plants from varieties USO31 and Finola. We also studied microspore and pollen amyloplast content and studied the effect of a cold pretreatment to excised buds prior to microspore in vitro culture. Up to 476,903 microspores and pollen grains per male flower, with in vivo microspore viability rates from 53.71 to 70.88% were found. A high uniformity in the developmental stage of microspores and pollen grains contained in anthers was observed, and this allowed the identification of bud length intervals containing mostly vacuolate microspores and young bi-cellular pollen grains. The starch presence in C. sativa microspores and pollen grains follows a similar pattern to that observed in species recalcitrant to androgenesis. Although at a low frequency, cold-shock pretreatment applied on buds can deviate the naturally occurring gametophytic pathway toward an embryogenic development. This represents the first report concerning androgenesis induction in C. sativa, which lays the foundations for double haploid research in this species.

2.
Front Plant Sci ; 11: 645, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670304

RESUMO

In vitro shoot regeneration can efficiently contribute to the improvement of recalcitrant Cannabis sativa L. We aimed at developing a highly efficient protocol for in vitro direct regeneration of C. sativa plants from different explants (cotyledon, hypocotyl, and true leaf) from seedlings of monoecious C. sativa short-day varieties Ferimon, Felina32, Fedora17, and USO31, together with dioecious neutral-day variety Finola. Ten regeneration media, including already published protocols, and self-designed combinations of plant growth regulators were tested. The developmental morphology since germination of seeds to the development of rooted plantlets was followed. Additionally, the ploidy level of explants and in vitro regenerants was analyzed. We concluded that hypocotyl is the best explant for in vitro direct regeneration of C. sativa plants with 49.45% of responding explants, while cotyledon and true leaf had a poor response with, respectively, 4.70 and 0.42% of explants developing plantlets. In terms of shoot regeneration, we found significant differences among the culture media evaluated and the varieties studied. Overall, the best regeneration media were ZEARIB 2.0 (mg/L) and ZEARIB 1.0 (mg/L) + NAA 0.02 (mg/L) with 66.67% of responding hypocotyls. Amazingly, hypocotyls cultured in medium without plant growth regulators showed an excellent response (61.54% of responding hypocotyls) and spontaneous rooting of regenerants (17.94%). In vitro regenerated plants were acclimatized just 6 weeks after culture initiation. The developmental morphology study suggests that regenerated shoots originate from pericycle cells adjacent to xylem poles. Polysomaty was detected in hypocotyls and cotyledons of all varieties studied, and diploid (>80%) and mixoploid (with diploid and tetraploid cells) plants were regenerated. Our protocol allows a high shoot organogenesis efficiency in different C. sativa varieties. The fact that a significant percentage of plants are mixoploid may provide an alternative way to develop polyploids in C. sativa. Our results show that direct in vitro regeneration may make a significant contribution to the development of improved C. sativa materials for medical applications.

3.
Molecules ; 20(10): 18464-81, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26473812

RESUMO

Vegetables represent a major source of phenolic acids, powerful antioxidants characterized by an organic carboxylic acid function and which present multiple properties beneficial for human health. In consequence, developing new varieties with enhanced content in phenolic acids is an increasingly important breeding objective. Major phenolic acids present in vegetables are derivatives of cinnamic acid and to a lesser extent of benzoic acid. A large diversity in phenolic acids content has been found among cultivars and wild relatives of many vegetable crops. Identification of sources of variation for phenolic acids content can be accomplished by screening germplasm collections, but also through morphological characteristics and origin, as well as by evaluating mutations in key genes. Gene action estimates together with relatively high values for heritability indicate that selection for enhanced phenolic acids content will be efficient. Modern genomics and biotechnological strategies, such as QTL detection, candidate genes approaches and genetic transformation, are powerful tools for identification of genomic regions and genes with a key role in accumulation of phenolic acids in vegetables. However, genetically increasing the content in phenolic acids may also affect other traits important for the success of a variety. We anticipate that the combination of conventional and modern strategies will facilitate the development of a new generation of vegetable varieties with enhanced content in phenolic acids.


Assuntos
Benzoatos/metabolismo , Genes de Plantas , Redes e Vias Metabólicas/genética , Melhoramento Vegetal/métodos , Característica Quantitativa Herdável , Verduras/genética , Antioxidantes/metabolismo , Ácidos Carboxílicos/metabolismo , Cinamatos/metabolismo , Cruzamentos Genéticos , Marcadores Genéticos , Humanos , Locos de Características Quantitativas , Verduras/metabolismo
4.
BMC Plant Biol ; 14: 350, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25491265

RESUMO

BACKGROUND: Eggplant is a powerful source of polyphenols which seems to play a key role in the prevention of several human diseases, such as cancer and diabetes. Chlorogenic acid is the polyphenol most present in eggplant, comprising between the 70% and 90% of the total polyphenol content. Introduction of the high chlorogenic acid content of wild relatives, such as S. incanum, into eggplant varieties will be of great interest. A potential side effect of the increased level polyphenols could be a decrease on apparent quality due to browning caused by the polyphenol oxidase enzymes mediated oxidation of polyphenols. We report the development of a new interspecific S. melongena × S. incanum linkage map based on a first backcross generation (BC1) towards the cultivated S. melongena as a tool for introgressing S. incanum alleles involved in the biosynthesis of chlorogenic acid in the genetic background of S. melongena. RESULTS: The interspecific genetic linkage map of eggplant developed in this work anchor the most informative previously published genetic maps of eggplant using common markers. The 91 BC1 plants of the mapping population were genotyped with 42 COSII, 99 SSRs, 88 AFLPs, 9 CAPS, 4 SNPs and one morphological polymorphic markers. Segregation marker data resulted in a map encompassing 1085 cM distributed in 12 linkage groups. Based on the syntheny with tomato, the candidate genes involved in the core chlorogenic acid synthesis pathway in eggplant (PAL, C4H, 4CL, HCT, C3'H, HQT) as well as five polyphenol oxidase (PPO1, PPO2, PPO3, PPO4, PPO5) were mapped. Except for 4CL and HCT chlorogenic acid genes were not linked. On the contrary, all PPO genes clustered together. Candidate genes important in domestication such as fruit shape (OVATE, SISUN1) and prickliness were also located. CONCLUSIONS: The achievements in location of candidate genes will allow the search of favorable alleles employing marker-assisted selection in order to develop new varieties with higher chlorogenic content alongside a lower polyphenol oxidase activity. This will result into an enhanced product showing a lower fruit flesh browning with improved human health properties.


Assuntos
Catecol Oxidase/genética , Ácido Clorogênico/metabolismo , Ligação Genética , Proteínas de Plantas/genética , Solanum/enzimologia , Solanum/genética , Catecol Oxidase/metabolismo , Mapeamento Cromossômico , Proteínas de Plantas/metabolismo , Solanum melongena/enzimologia , Solanum melongena/genética , Sintenia
5.
Int J Mol Sci ; 15(10): 17221-41, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25264739

RESUMO

Scarlet (Solanum aethiopicum) and gboma (S. macrocarpon) eggplants are important vegetables in Sub-Saharan Africa. Few studies have been made on these crops regarding the diversity of phenolic content and their biological activity. We have studied the reducing activity, the chlorogenic acid and other phenolic acid contents in a collection of 56 accessions of scarlet eggplant, including the four cultivated groups (Aculeatum, Gilo, Kumba, Shum) and the weedy intermediate S. aethiopicum-S. anguivi types, as well as in eight accessions of gboma eggplant, including the cultivated S. macrocarpon and its wild ancestor, S. dasyphyllum. A sample of the accessions evaluated in this collection has been tested for inhibition of nitric oxide (NO) using macrophage cell cultures. The results show that there is a great diversity in both crops for reducing activity, chlorogenic acid content and chlorogenic acid peak area (% of total phenolic acids). Heritability (H2) for these traits was intermediate to high in both crops. In all samples, chlorogenic acid was the major phenolic acid and accounted for more than 50% of the chromatogram peak area. Considerable differences were found among and within groups for these traits, but the greatest values for total phenolics and chlorogenic acid content were found in S. dasyphyllum. In most groups, reducing activity was positively correlated (with values of up to 0.904 in the Aculeatum group) with chlorogenic acid content. Inhibition of NO was greatest in samples having a high chlorogenic acid content. The results show that both crops are a relevant source of chlorogenic acid and other phenolic acids. The high diversity found also indicates that there are good prospects for breeding new scarlet and gboma eggplant cultivars with improved content in phenolics and bioactive properties.


Assuntos
Ácido Clorogênico/análise , Sequestradores de Radicais Livres/análise , Solanum/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ácido Clorogênico/farmacologia , Cromatografia Líquida de Alta Pressão , Sequestradores de Radicais Livres/farmacologia , Frutas/química , Frutas/metabolismo , Hidroxibenzoatos/análise , Hidroxibenzoatos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Solanum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...